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Abstract
We propose a scheme for generating a nonlinear finite-dimensional pair
coherent state of the vibrational motion of an ion in a two-dimensional trap. It is
a type of the correlated two-mode states but in finite dimensions. Based on the
resonant ion–cavity interaction, we propose a scheme to generate these states
revealing their connection with the converter type of interaction and investigate
some of their nonclassical properties.

PACS numbers: 03.65.Ca, 03.65.−w, 42.50.A

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Entanglement is at the heart of the current development of quantum information processing
[1]. Entanglement-assisted communication can enlarge the channel capacity [2] and enhance
channel efficiency [3]. Entanglement may play a key role in communication security [4].
In quantum computation, of course, qubits are massively entangled. The generation and
characterization of entanglement have been studied extensively. Coherent states and their
variants and generalizations have been extensively studied over the last four decades (a
comprehensive review of this development can be found in [5]). Subsequently, the notion
was generalized in various ways. Motivations to generalize the concept have arisen from
symmetry considerations [6], dynamics [7] and algebraic aspects [8]. A generalized class of
the conventional coherent state called the nonlinear coherent states or the f -coherent state [9]
has been constructed.

On the other hand, pair coherent states (PCS) are regarded as an important type of
correlated two-mode states, which possess prominent nonclassical properties. Such states
denoted by |ζ, q〉 are eigenstates of the operator pair (âb̂) and the number difference (n̂a − n̂b)
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where â and b̂ are the annihilation operators of the field modes and n̂a = â†â and n̂b = b̂†b̂.
These states satisfy

âb̂|ζ, q〉 = ζ |ζ, q〉 and (n̂a − n̂b)|ζ, q〉 = q|ζ, q〉. (1)

The experimental realization of such nonclassical states is of practical importance. Agarwal
[10] suggested that the optical PCS can be generated via the competition of four-wave mixing
and two-photon absorption in a nonlinear medium. Another scheme has been suggested for
generating vibrational pair coherent states via the motion of a trapped ion in a two-dimensional
trap [11].

An ion confined in an electromagnetic trap can be regarded as a particle with quantized
centre-of-mass motion in a harmonic potential. Exciting or de-exciting the internal atomic
states of the trapped ion by a classical laser driving field changes the external states of the ion
motion, as atomic-stimulated absorption and emission processes are always accompanied by
momentum exchange of the laser field with the ion. If the vibrational amplitude of the ion is
much smaller than the laser wavelength, i.e., in the Lamb–Dicke limit [12], and the driving
field is tuned to one of the vibrational sidebands of the atomic transition, then this model can be
simplified to a form similar to the Jaynes–Cummings model (JCM) [13] in which the quantized
radiation field is replaced by the quantized centre-of-mass motion of the ion. As the coupling
between the vibrational modes and the external environment is extremely weak, dissipative
effects which are inevitable from cavity damping in the optical regime can be significantly
suppressed for the ion motion. This unique feature thus makes it possible to realize cavity QED
experiments without using an optical cavity. Following this approach, nonclassical vibrational
states of the trapped ions such as Fock [14], squeezed [15] and Schrödinger cat states [16]
have been proposed and observed [17].

On the other hand, the finite-dimensional PCS has been studied recently by Obada and
Khalil [18] as the eigenstate of the pair operators

(
â†b̂ + ζ q+1(âb̂†)q

(q!)2

)
and the sum of the photon

number operators for the two modes (Q̂ = n̂a + n̂b). In the present paper we develop this
idea and introduce a nonlinear finite-dimensional state (NPCS) as the eigenstate of the pair

operators
(
f1(n̂a)â

†f2(n̂b)b̂ +
ζ q+1

(
â 1

f1(n̂a )
1

f2(n̂b )
b̂†
)q

(q!)2

)
and (â†â + b̂†b̂) for the two modes, namely,(

f1(n̂a)â
†b̂f2(n̂b) +

ζ q+1
(
â 1

f1(n̂a)
1

f2(n̂b)
b̂†)q

(q!)2

)
|ζ, q〉 = ζ |ζ, q〉, Q̂|ζ, q〉 = q|ζ, q〉, (2)

where the parameter ζ is a complex variable while the parameter q is an integer. The expansion
of this state in the two-mode states |na, nb〉 = |na〉 ⊗ |nb〉, where |ns〉 is the Fock state for the
mode s (s = a or b), takes the form

|ζ, q〉 = Nq

q∑
n=0

ζ n

√
(q − n)!

q!n!

f1(q − n)!

f1(q)!f2(n)!
|q − n, n〉, (3)

where f (n)! = f (0) · f (1) · · · f (n) and f (0) = 1, the normalization constant Nq is given by

Nq =
[

q∑
n=0

|ζ |2n (q − n)!

q!n!

(
f1(q − n)!

f1(q)!f2(n)!

)2
] −1

2

. (4)

Because of the appearance of the operators â†b̂ or âb̂† in this form and the functions
f1(n̂a) and f2(n̂b), it may be legitimate to call it a finite-dimensional nonlinear pair coherent
state or converter state.
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Once we have introduced this class of nonlinear finite-dimensional pair coherent states,
we wish to discuss some of their statistical properties. The results that we are going to
present stem from a new approach to the above state. Subsequently, we shall examine the
sub-Poissonian distribution and the phase properties of the state (3). Therefore, the generation
scheme for the mentioned state is demonstrated in the next section.

2. Generation scheme

In this section, we concern ourselves with the context of trapped ions. Since ions can be trapped
very efficiently and their entanglement with the environment is extremely weak, trapped ions
have advantages for many purposes such as preparing various types of nonclassical states (see,
e.g., [17–24]), simulating nonlinear interactions [25], demonstrating quantum phase transitions
[26, 27], establishing quantum search algorithms [28] and so on. The most promising merit of
trapped ion systems is perhaps the possibility of implementing scalable quantum computers
[29] in which a number of ions are involved [30–32]. Nevertheless, many tasks can still
be done even with a single ion. For instance, a controlled-NOT quantum logic gate can be
performed just by a single trapped ion [33–36]. Here, we propose an experimental scheme to
generate the state of equation (3) in the vibrionic motion of an ion which is trapped in real
two-dimensional (2D) space.

The specification of the operators
(
f1(n̂a)â

†f2(n̂b)b̂ +
ζ q+1

(
â 1

f1(n̂a )
1

f2(n̂b )
b̂†
)q

(q!)2

)
is subject to the

generation schemes within the framework of the motion of a trapped ion in a two-dimensional
harmonic potential. Consider a single ion trapped in a 2D harmonic potential with frequencies
ν1 (in the x-direction), ν2 (in the y-direction) in interaction with three laser fields propagating
in the same direction tuned respectively to the electronic transition ω0 of the ion and to
the vibrational sideband of frequency taken as follows: the first vibrational sideband has the
frequency (ν2 − ν1) lower than that transition, but the second vibrational sideband has the
frequency q(ν1 − ν2) higher than that transition. The Hamiltonian of this system is written as

H = ν1â
†â + ν2b̂

†b̂ +
ω0

2
σz + µ[{E0 exp i(k1x + k2y − ω0t + φ0)

+ E1 exp i(k1x + k2y − [ω0 − (ν2 − ν1)t] + φ1)

+ E2 exp i(k1x + k2y − [ω0 − q(ν1 − ν2)]t + φ2)}σ+ + h.c.]. (5)

We denote by â and b̂ the annihilation operators of the quantized bosons that describe the
vibrational motion in the two dimensions x and y. The operators σ+(σ−) and σz are the raising
(lowering) and the population inversion operators of the electronic states of the two-level ion.
µ is the dipole matrix element and ks (s = 1, 2) are the components of the wave vectors of
the driving laser fields of amplitudes E0, E1 and E2 with phases φ0, φ1 and φ2, respectively.
The quantized centre-of-mass position x̂ and ŷ can be written as

x̂ = �x(â + â†), ŷ = �y(b̂ + b̂†), (6)

with �x and �y are the standard deviation for x̂ and ŷ in the ground state of the harmonic
potential. We may use a vibrational rotating wave approximation and neglect the terms with
fast oscillations [11, 37]. Thus, the interactions Hamiltonian is simplified to

Hint = exp

[
−

(
η2

1 + η2
2

)
2

] [
σ+

{
�0 exp(iφ0)

∑
m1,m2

(iη1)
2m1(iη2)

2m2

(m1!)2(m2!)2
â†m1 âm1 b̂†m2 b̂m2

+ �1 exp(iφ1)
∑

m1,m2

(iη1)
2m1+1(iη2)

2m2+1

m1!(m1 + 1)!m2!(m2 + 1)!
â†m1+1âm1 b̂†m2 b̂m2+1
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+ �2 exp(iφ2)
∑

m1,m2

(iη1)
2m1+q(iη2)

2m2+q

m1!(m1 + q)!m2!(m2 + q)!
â†m1 âm1+q b̂†m2+q b̂m2

}
+ h.c.

]
.

(7)

|�0| = |µ ·E0|, |�1| = |µ ·E1| and |�2| = |µ ·E2| are the Rabi frequencies related to the
different laser fields and ηs are the Lamb–Dicke parameters, where η1 = k1�x, η2 = k2�y

[11]. It should be noted that n̂1 + n̂2 is a constant of motion for the Hamiltonian (7). The terms
in the parenthesis in (7) can be summed in terms of the associated Laguerre polynomials; thus
equation (7) is given as follows:

Hint = λ(f1(n̂a)â
†f2(n̂b)b̂ + ζ q+1âqf3(n̂a)b̂

†qf4(n̂b) − ζ )σ+ + h.c. (8)

where

f1(n̂a) = L1
n̂a−1

(
η2

1

)
(n̂a)L

0
n̂a

(
η2

1

) , f2(n̂b) = L1
n̂b

(
η2

2

)
(n̂b + 1)L0

n̂b

(
η2

2

) ,

f3(n̂1) = (n̂a − q)!L1
n̂a−q

(
η2

1

)
(n̂a)!L0

n̂a

(
η2

1

) , f4(n̂b) = n̂b!L1
n̂b

(
η2

2

)
(n̂b + q)!L0

n̂b+q

(
η2

2

) ,

(9)

λ = −�1η1η2L
0
n̂a

(
η2

1

)
L0

n̂b

(
η2

2

)
exp

[
−

(
η2

1 + η2
2

)
2

+ iφ1

]
,

ζ = −�0 exp i(φ0 − φ1)

�1η1η2
,

(10)

and Lm
n (x) are associated Laguerre polynomials given by Lm

n (x) = ∑n
r=0

(
n + m

n − r

)
(−1)r

r! xr .

While �2 is related to the other parameters through the formula �2 = ζ q+1�1

(−1)q−1(η1η2)q−1f1(q)!f2(q)! ,
therefore the parameters ζ and q are controlled by the amplitudes and phases of the applied
laser fields and the Lamb–Dicke parameters. In the experiments performed on 9Be+ ion
with laser beam containing ≈1 nw of power at 313 nm, the Lamb–Dicke parameter η is
calculated to be ≈0.23. Thus, using this estimate for η1 and η2 put η1η2 ≈ 0.05. For the
values |ζ | ≈ η1η2 and for arbitrary q, then �0 ∼ �1(η1η2)

2,�2 ∼ �1
(η1η2)

2

f1(q)!f2(q)! which gives

�0 ∼ �1
400 ,�2 ∼ �1

400f1(q)!f2(q)! . Thus, the value for E1 has to be two orders of magnitude higher
than E0 and E2. Since �i = µ · Ei = µ Ei cos(θi) (i = 0, 1, 2) the angle θi can be used to
reduce the estimate for Ei. This means that moderate values for E0 and E2 and strong value
of E1 are sufficient to produce such state with arbitrary q for |ζ | ≈ η1η2. However, for larger
values of |ζ | the number q must attain large values for appropriate laser fields.

For generating the state of equation (3) let us look at the master equation for the density
matrix under spontaneous emission with energy dissipation rate γ which is given by [11]

∂ρ̄

∂t
= −i[Hint, ρ] +

γ

2
[2σ−ρσ+ − σ+σ−ρ − ρσ+σ−]. (11)

The stationary solution ρ̄s for this master equation is obtained by setting ∂ρ̄

∂t
= 0. A solution

ρ̄s can be given as

ρ̄s = |g〉|ζ 〉〈ζ |〈g|, (12)

with |g〉 being the electronic ground state (σ−|g〉 = 0, 〈g|σ+ = 0) and |ζ 〉 is the vibration
eigenstate that satisfies Hint|ζ 〉 = 0. It is straightforward to show that |ζ 〉 belongs to the class
of states considered in (2). To tailor the Hamiltonian of any nonlinear multi-quanta JCM a
scheme of using a number of lasers has been presented to produce such interaction [38, 39].
It is to be mentioned that the nonlinear JCM has been realized experimentally [40].
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3. Relations to other states

3.1. Relation to SU(2) group

The operators Jx, Jy and Jz are defined as

Jx =
(
f1(n̂a)â

†f2(n̂b)b̂ + â 1
f1(n̂a)

b̂† 1
f2(n̂b)

)
2

,

Jy =
(
f1(n̂a)â

†f2(n̂b)b̂ − â 1
f1(n̂a)

b̂† 1
f2(n̂b)

)
2i

,

Jz = (n̂a − n̂b)

2
,

(13)

which satisfy the commutation relations [Jx, Jy] = iJz, [Jy, Jz] = iJx and [Jz, Jx] = iJy . It
is useful to introduce the following operators:

J+ = Jx + iJy = f1(n̂a)â
†f2(n̂b)b̂, J− = Jx − iJy = â

1

f1(n̂a)
b̂† 1

f2(n̂b)
. (14)

Then, we have the commutation relation

[Jz, J±] = ±J±, [J+, J−] = 2Jz. (15)

Furthermore, the operator

Ĉ2 = J 2
z +

1

2
(J+J− + J−J+) =

(
n̂a + n̂b

2

)(
n̂a + n̂b

2
+ 1

)
. (16)

These operators can be thought of as operation under Lie algebra with the generators Ji.

It is to be noted that Jx and Jy are not Hermitian operators and hence J+ is not the Hermitian
conjugate of J−. The operator Ĉ2 commutes with all the generators of the Lie algebra and
in the language of group theory is known as a Casimir operator. The state (3) is a eigenstate
for the operator Ĉ2 with eigenvalue q

2

(
q

2 + 1
)
. The unitary irreducible representations of the

SU(2) are just the familiar angular momentum states |j,m〉 satisfying the relations

Ĉ2|j,m〉 = j (j + 1)|j,m〉, Jz|j,m〉 = m|j,m〉
J+|j,m〉 = |f1(j + m + 1)||f2(j − m − 1)|

√
(j + m + 1)(j − m)|j,m + 1〉,

J−|j,m〉 =
√

(j + m)(j − m + 1)

|f1(j + m)||f2(j − m)| |j,m + 1〉,

j = 1

2
, 1,

3

2
, 2, . . . , m = −j,−j + 1, . . . , j.

(17)

Note that the representations are finite dimensional, the dimension for a given j being
2j + 1. Now if we take q = 2j , the state (3) takes the following form:

|ζ, 2j 〉 = N2j

2j∑
n=0

ζ n f1(2j − n)!

f1(2j)!f2(n)!

√
(2j − n)!

2j !n!
|2j − n, n〉

= N2j

j∑
n=−j

ζ n+j f1(j − n)!

f1(2j)!f2(n + j)!

√
(j − n)!

2j !(n + j)!
|j − n, n + j 〉, (18)

which is eigenstate of the operator Ĉ2 with eigenvalue j (j + 1).
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3.2. Exponential form

The state |ζ, q〉 of equation (3) may be cast as

|ζ, q〉 = Nq

q∑
n=0

ζ n (q − n)!ânb̂†n

q!n!

f1(q − n)!

f1(q)!f2(n)!
|q, 0〉. (19)

One can show that

[âb̂†g(n̂a, n̂b)]
n = ânb̂†n

n−1∏
m=0

g(n̂a − m, n̂b + m). (20)

Here, g(n̂a, n̂b) is an arbitrary function of n̂a and n̂b. Then using equation (19), with

g(n̂a, n̂b) = ζ

f1(n̂a)f2(n̂b)n̂a

, (21)

the state |ζ, q〉 is finally written in the exponential form

|ζ, q〉 = Nq

∞∑
n=0

[
âb̂† ζ

f1(n̂a)f2(n̂b)n̂a

]n

n!
|q, 0〉 = Nq exp

[
âb̂† ζ

f1(n̂a)f2(n̂b)n̂a

]
|q, 0〉. (22)

3.3. Bell states

Entanglement is an essential resource for many applications in quantum information science
such as quantum superdense coding [41, 42], quantum teleportation [43–48], quantum
cryptography [49–51] and quantum computing [52, 53], most of these applications are based
on the maximally entangled two-particle quantum states called Bell states. The maximally
entangled single-phonon number states are defined as |ψ〉 = |1, 0〉 or |0, 1〉, two-phonon
number states as |ψ〉 = |1, 1〉 and null-photon states as |ψ〉 = |0, 0〉. We can generate the
maximally entangled states by taking the nonlinear functions f1(n̂a) = Î and f2(n̂b) = Î and
the parameter q takes the values 1, 2, 0, respectively.

|1, 1〉 = 1

ζN2

√
2

[|ζ, 2〉 − |−ζ, 2〉] |0, 1〉 = 1

2ζN1
[|ζ, 1〉 − |−ζ, 1〉]

|1, 0〉 = 1

2N1
[|ζ, 1〉 + |−ζ, 1〉] |0, 0〉 = |0, 0〉

(23)

where Nq is given by equation (4), the maximal entangled states are defined as follows:

ψ± = 1√
2
(|1, 1〉 ± |0, 0〉), ϕ± = 1√

2
(|1, 0〉 ± |0, 1〉). (24)

Thus, the maximally entangled states ψ±, ϕ± which play an important role in quantum
measurement theory can be constructed from the states |ζ, q〉.

4. Nonclassical effects

The experimental feasibility of models involving more than one mode in a high-Q cavity
has been more or less considered by many authors [54]. It is worthwhile remarking that
investigating such models goes beyond an intrinsic theoretical interest because new generation
of high-Q electromagnetic cavities, covering a wide wavelength range, is realizable today
[54, 55]. Thus, in the following subsections we investigate the influence of the controlling
parameters q, η1 and η2 on the nonclassical behaviour of the modes where, in particular, the
sub-Poissonian distribution and the phase distribution are discussed.



Generation and some nonclassical properties of a nonlinear finite-dimensional pair coherent state 11059

4.1. Sub-Poissonian distribution

In this section, we shall evaluate the correlation function to discuss the phenomenon of sub-
Poissonian distribution. This phenomenon can be measured by photon detectors based on
photoelectric effect. It is well known that sub-Poissonian statistics is characterized by the
fact that the variance of the photon number 〈(�n̂i)

2〉 is less than the average photon number〈
â
†
i âi

〉 = 〈n̂i〉. This can be expressed by means of the normalized second-order correlation
function for the mode z in a quantum state |ζ, q〉 [56] as follows:

g(2)
z (ζ ) = 〈ζ, q|n̂z(n̂z − 1)|ζ, q〉

〈ζ, q|n̂z|ζ, q〉2
, ∀z = a, b (25)

where

〈ζ, q|n̂a(n̂a − 1)|ζ, q〉 = N2
q

q∑
n=0

|ζ |2n

(
f1(q − n)!

f1(q)!f2(n)!

)2
(q − n)!

q!n!
(q − n)(q − n − 1),

〈ζ, q|n̂b(n̂b − 1)|ζ, q〉 = N2
q

q∑
n=0

|ζ |2n

(
f1(q − n)!

f1(q)!f2(n)!

)2
(q − n)!

q!n!
n(n − 1),

(26)

and

〈ζ, q|n̂a|ζ, q〉 = N2
q

q∑
n=0

|ζ |2n

(
f1(q − n)!

f1(q)!f2(n)!

)2
(q − n)!

n!
(q − n),

〈ζ, q|n̂b|ζ, q〉 = N2
q

q∑
n=0

|ζ |2n

(
f1(q − n)!

f1(q)!f2(n)!

)2
(q − n)!

n!
n,

(27)

where f1(q − n) and f2(n) are given by equation (9). The function g(2)
z (ζ ) given by (23)

for the mode z serves as a measure of the deviation from the Poissonian distribution that
corresponds to coherent states with g(2)

z (ζ ) = 1. If g(2)
z (ζ ) < 1 (>1) the distribution is called

sub (super)-Poissonian, if g(2)
z (ζ ) = 2, the distribution is called thermal and when g(2)

z (ζ ) > 2
it is called super-thermal.

To reveal the physical content of the state, we plot g(2)
a (ζ ) against |ζ |. In the first case

when we take η = 0, we show that when q = 0 or 1 the function g(2)
a (ζ ) = 0 due to the fact

that the states present are either vacuum or one photon and for both of them g(2)(ζ ) is zero.
For the effectiveness we take q = 3, it is to be observed that the state starts at g(2)

a (0) = 2
3

and for a short interval of |ζ | the function g(2)
a (ζ ) has full sub-Poissonian distribution. Also

super-Poissonian behaviour appears for higher values of ζ and its behaviour is almost like the
thermal distribution as observed in figure 1(a). In figure 1(a) we take q = 4, 5, we find that
the function starts at 3

4 and 4
5 , respectively, as has been studied earlier in [18]. This is because

it appears that we have the Fock state |q〉 present in this case when ζ → 0 and g(2)
a (ζ ) = q−1

q
.

In this basis, we see that g(2)
a (ζ ) < 1 for a short range of ζ . When the parameter ζ is increased

further, the state |ζ, q〉 exhibits super-Poissonian behaviour and for large values of |ζ | the state
reaches super-thermal state behaviour because for ζ → ∞ we get the limit g

(2)
b (ζ ) = 4(q−1)

q
.

The nonclassical nature of the state is apparent, when one takes the value q = 2 where the
function g(2)

a (ζ ) < 1 as shown in figure 1(a). On the other hand, when we take q > 2 the
function g(2)

a (ζ ) > 2 for higher values of ζ .
As soon as one takes the nonlinear functions f1(q − n) and f2(n) into consideration and

adjusts the parameters η = η1 = η1 = 0.3 in figure 1(b), one can see that the starting points
are unchanged for the three curves, but the interval of |ζ | for the full sub-Poissonian and
super-Poissonian distributions increases. The super-thermal state behaviour is also appearing,
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(a) (b)

(c) (d )

Figure 1. The sub-Poissonian function as a function of |ζ |: (a) for mode a and η = 0, (b) for
mode b and η = 0, (c) for mode a and η = 0.3, (d) for mode b and η = 0.3, where the solid curve
is for q = 3, the dotted curve is for q = 4, the dashed curve is for q = 5.

but the maximum values for the curves are decreasing comparing with the above case as
observed in figure 1(b).

Further we consider the function g
(2)
b (ζ ) for the second mode. For the parameters η = 0, q

takes the values 3, 4 and 5 and we find that the function g
(2)
b (ζ ) starts at 1.5, 0.75 and 1.25,

respectively. Because the condition between the two modes (â†â + b̂†b̂) is constant, thus
when we take the limits as ζ → 0 we get the limit g

(2)
b (ζ ) = q

q−1 . We see that g
(2)
b (ζ ) has a

decreasing trend and so for sufficiently large values of |ζ | it shows sub-Poissonian behaviour
because for ζ → ∞ we get the limit g

(2)
b (ζ ) = q−1

q
. For further increase of q, the state |ζ, q〉

exhibits full sub-Poissonian behaviour (see figure 1(c)). We note that the super-Poissonian
distribution interval increases by increasing the parameter q. As it is exhibited by figures 1(a)
and (c), the modes a and b behave differently for small values of |ζ | and also for large values
of |ζ |. However, both modes may show sub-Poissonian behaviour. For example when we
take |ζ | = √

2 and q = 2, it is found that g(2)
a (ζ ) = g

(2)
b (ζ ) = 2

3 which means sub-Poissonian
behaviour in both modes, see [18]. When we take the nonlinearity parameter η = 0.3 into
account, we find that when q is small there exists a short interval of |ζ | where the function
g

(2)
b (ζ ) reaches super-Poissonian state behaviour; the distribution is lowered gradually to

sub-Poissonian behaviour as observed in figure 1(d).

4.2. Phase properties

The quantum properties of the radiation field can be investigated under different points of
view. Therefore, we continue our progress and devote the present section to considering
and discussing the phase distribution for the states (3). For this reason, it is convenient to



Generation and some nonclassical properties of a nonlinear finite-dimensional pair coherent state 11061

(a) (b)

(c) (d )

Figure 2. The phase distribution Pζ,q (θ) against the angle θ = (θ2 − θ1): (a) q = 1 and η = 0,
(b) q = 10 and η = 0, (c) q = 1 and η = 0.3, (d) q = 10 and η = 0.3, where the solid curve is
for ζ = 1, the dotted curve is for ζ = 3 and the dashed curve is for ζ = 5.

use the phase formalism introduced by Barnett and Pegg [56–59]. It is well known that the
phase operator is defined as the projection operator on a particular phase state multiplied by
the corresponding value of the phase. Therefore, one can find that the Pegg–Barnett phase
distribution function Pζ,q(θ1, θ2) is given by [46]

Pζ,q(θ1, θ2) = |Nq |2
(2π)2

∑
n,m

ζ nf1(q − n)!

f1(q)!f2(n)!

ζ ∗mf1(q − m)!

(f1(q)!f2(m)!)2

√
(q − n)!(q − m)!

q!n!q!m!

× exp[i[(q − n) − (q − m)]θ1 + i(n − m)θ2]. (28)

Therefore, the phases distribution function can be written as

Pζ,q(θ1, θ2) = |Nq |2
(2π)2

∣∣∣∣∣
∑

n

ζ nf1(q − n)!

f1(q)!f2(n)!

√
(q − n)!

q!n!
exp[inθ ]

∣∣∣∣∣
2

,

−π � θ � π, θ = θ2 − θ1

(29)

which is normalized according to
∫ π

−π

∫ π

−π
P (θ1, θ2, ζ ) dθ1 dθ2 = 1. Due to the correlation

between the two modes, the phase distribution depends on the difference between the phases
modes. In the figures, we plot Pζ,q(θ) against the angle θ = θ2 − θ1 for different values of the
parameters q, |ζ | and η.

To discuss the phase behaviour for the present state, we have plotted the function against
the phase angle θ for η = 0 and different values of q. Generally, for very small (large) values
of |ζ | the state (3) almost represents a Fock state and hence the information about the phase
is lost. As |ζ | increases partial coherent phase states result and the phase distribution shows a
peak. This peak is concerted at θ = 0 and the distribution is symmetric around this peak. For
q = 2, plotted in figure 2(a), it is observed that Pζ,q(θ) starts at Pζ,q(−π) = 0, 0.01, 0.016
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when |ζ | = 1, 3 and 5, respectively. The maxima for the distribution at θ = 0 decrease by
increasing |ζ |. In figure 2(a), we take into account the parameter η as equal 0.3, we see that
the maximum values of the previous curves are decreased as observed in figure 2(b).

In figure 2(c), we take a large value for the parameters (η = 0, q = 10) and the same values
of |ζ | = (1, 3, 5). We see that the function Pζ,q(θ) starts at P(−π) = 0.013, 0.002, 0.003
when |ζ | = 1, 3 and 5, respectively. The maxima for the distribution at θ = 0 decrease
by increasing the value of |ζ |. However, this increase turns to a decrease for larger values
of |ζ |. The maximum value for Pζ,q(0) shifts to higher values of |ζ | as q increases. As
soon as one takes the nonlinear functions f1(q − n) and f2(n) into consideration and adjusts
the parameters η = 0.3, we observe that a peak around θ = 0 develops and increases by
decreasing the parameter |ζ | as observed in figure 2(d). The behaviour of the nonlinearity
functions for the phase distribution in this case is the same as in the first case (small values
of q).

5. Conclusion

In this work, we have studied an extension of a nonlinear finite-dimensional pair coherent
state and proposed a scheme for generating a correlated two-mode finite-dimensional state
in the vibrational motion of a trapped ion in two-dimensional harmonic potential. These
states generated by this scheme are stable because they appear in a steady regime in which
the ion has fully relaxed to its ground state. If the vibrational state of motion of the ion is
initially formed in this state, then the steady state of the system is a pure state given by a
product of the atomic ground state with a state (3) of the vibrational motion. In this case,
the three parameters, ζ, q and η, that characterize the two-mode nonlinear finite-dimensional
states are determined by the intensities and phases of the driving lasers, the Lamb–Dicke
parameter and by the sum of the phonon number of the two vibrational modes. Based on
recent techniques the present scheme could be realized experimentally [40]. The effect of the
nonlinearity function is shown for the sub-Poissonian and phase distributions. The behaviour
of the sub-Poissonian distribution function depends on the values of nonlinearity function and
q parameter. Comparisons between the nonlinear finite-dimensional pair coherent state and the
standard finite-dimensional pair coherent state have been made for the different phenomena.
These states may find applications in the fields of quantum optics and quantum information.
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Appendix

In this appendix we give the derivation of equations (17). We note that the relation between
the pair (j,m) and the pair (n̂a, n̂b) is

2j = n̂a + n̂b, 2m = n̂a − n̂b. (A.1)

The matrix elements of J+ can be derived as follows:

J+|j,m〉 = kj,m|j,m + 1〉. (A.2)

By using the Hermitian conjugate we find that

〈j,m|J †
+ = k̄j,m〈j,m + 1| (A.3)
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then

〈j,m|J †
+J+|j,m〉 = |kj,m|2. (A.4)

From equation (14) and its Hermitian conjugate we show that

〈j,m|J †
+J+|j,m〉 = |f1(na)|2|f2(nb)|2(na + 1)nb

= |f1(j + m + 1)|2|f2(j − m − 1)|2(j + m + 1)(j − m), (A.5)

by comparing (A.4) with (A.5) we find that

kj,m = |f1(j + m + 1)||f2(j − m − 1)|
√

(j + m + 1)(j − m). (A.6)

In a similar way we can prove that

J−|j,m〉 =
√

(j + m)(j − m + 1)

|f1(j + m)||f2(j − m)| |j,m + 1〉. (A.7)
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